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Critical branching simple random walk in Zd

Step size of SRW : P(X = e) = 1
1+2d , ∀|e|1 ≤ 1.

Critical offspring law : {pk ; k ≥ 0} s.t.
∑

k≥0 kpk = 1 and∑
k≥0 k

2pk − 1 = σ2 < ∞.

Model:

At time 0, root ρ located at Sρ = 0 ∈ Zd ;
At time n + 1, any particle u of the n-th generation dies and
produces independently Nu children and from Su, the position
of u, each child makes a jump according to X . Nu is
distributed as {pk ; k ≥ 0}.
For any B ⊂ Zd ,

Zn(B) :=
∑
|u|=n

1Su∈B ,

where |u| denotes the generation of u. {Zn = Zn(Zd)}n≥0 is a
critical GW process which becomes extinct a.s.
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Survival probability in B at time n

For any fixed finite set B ⊂ Zd ,

P0(Zn(B) ≥ 1) ∼?

Kolmogorov’1938 showed that P(Zn ≥ 1) ∼ 2
σ2n

as n → ∞.

When d ≥ 3, Rapenne’2022+ obtains that

P0(Zn(B) ≥ 1) ∼ Constant × Pn(B) ∼
C0|B|
nd/2

.

where Pn(B) = P0(Sn ∈ B) with {Sn}n≥0 simple random walk
in Zd . Moreover,

P0(Zn(B) ∈ ·|Zn(B) ≥ 1) → pB(·).
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How about d = 2?

Durrett’1979 proved for critical branching Brownian motion in
R2, if B is a bounded open set with |∂B| = 0,

P0(
8π

log n

Zn(B)

|B|
> h) ∼e−h 4

n log n
,∀h > 0.

⇒ P0(Zn(B) ≥ 1) = P0(
8π

log n

Zn(B)

|B|
> 0) ≳

4

n log n
.

Lalley-Zheng’2011 proved that if B = {x} ⊂ Z2, offspring is
critical binary p0 = p2 = 1/2, motion is SRW,

Pn(x)

C3 + C4 log n
≤ P0(Zn(x) ≥ 1) ≤ C1

n log n
exp(−C2

|x |2

n
)

where Pn(x) = P0(Sn = x) with {Sn}n≥0 simple random walk.
Note that

Pn(x) =
5

4πn
e−

5|x|2
4n +

on(1)

n
.
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Yaglom theorem for CBRW [C. He and Lin’2022+, in progress]

When d = 2, if
∑

k e
δkpk < ∞ for some δ > 0, then

1 uniformly for x ∈ Z2,

P0(Zn(x) ≥ 1) =
Pn(x)

cSRWσ2 log n
+ o(

1

n log n
);

where Pn(x) ∼ CSRW
n if |x | = o(

√
n).

2 for any fixed bounded set B ⊂ Z2,

P0(Zn(B) ≥ 1) ∼ 4

σ2n log n
;

3 further, for zn ∈ Z2 such that zn/
√
n → z ∈ R2,

L( Zn(zn + B)

cSRW |B| log n
|Zn(zn + B) ≥ 1) → Exp(1).
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Critical BRW in Z2

classical Yaglom theorem

For critical GW process {Zn}n≥0,

L( Zn

σ2n/2
|Zn ≥ 1) → Exp(1).

Theorem[C. He and Lin’2022+, in progress]

When d = 2, if
∑

k e
δkpk < ∞ for some δ > 0, then for any

|x | = O(
√
n),

L( Zn

σ2n/2
,

Zn(x)

cSRW log n
|Zn(x) ≥ 1) → (Γ(2, 1),Exp(1)︸ ︷︷ ︸

indep.

).
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CBRW at typical position

At time n, given {Zn ≥ 1}, choose uniformly one particle among
Zn alive ones and denote its position by S∗

n which is called typical
position.

Theorem [C. He and Lin’2022+, in progress]

When d = 2, if
∑

k e
δkpk < ∞ for some δ > 0, then,

L( Zn(S
∗
n )

cSRW log n
|Zn ≥ 1) → Γ(2, 1).

This confirms a conjecture of Lalley-Zheng’2011.
Let Ωn =

∑
x∈Z2 1{Zn(x)≥1} be the number of occupied sites.

Lalley-Zheng’2011 showed that conditioned on {Zn ≥ 1},

Ωn = OP(
n

log n
), Vn = max

x
Zn(x) = OP(log n)

2.
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Survival at two sites

Observations:

For Ωn the total number of occupied sites at time n,

E0[Ωn] =
∑
x∈Z2

P0(Zn(x) ≥ 1) ≈
∑
x

Pn(x)

cSRWσ2 log n
=

1

cSRWσ2 log n
.

So, E0[Ωn|Zn ≥ 1] ∼ cΩ
n

log n . The second moment is

E0[Ω
2
n] =

∑
x ,z

P0(Zn(x) ≥ 1,Zn(z) ≥ 1)

Question: P0(Zn(x) ≥ 1,Zn(x + zn) ≥ 1) with |x | = O(
√
n) and

|zn| = ℓn ∈ [1,
√
n].
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Theorem[C. He and Lin’2022+, in progress]

When d = 2, if
∑

k e
δkpk < ∞ for some δ > 0, then for ℓn = |zn|

and |x | = O(
√
n),

1 if ℓn = no(1), then

P0(Zn(x) ≥ 1,Zn(x + zn) ≥ 1) ∼ P0(Zn(x) ≥ 1);

2 if ℓn = na with a ∈ (0, 1/2), then

P0(Zn(x) ≥ 1,Zn(x + zn) ≥ 1) ∼ P0(Zn(x) ≥ 1)
1− 2a

1− a
;

3 if zn/
√
n → z1 ̸= 0 and x/

√
n → z0 (ℓn ∼ constant ×

√
n),

then

P0(Zn(x) ≥ 1,Zn(x + zn) ≥ 1) ∼ P0(Zn(x) ≥ 1)
γ(z0, z1)σ

2

log n
.
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where Y is Exp(1) random varaible.
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√
n → z1 ̸= 0 and x/

√
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√
n),

then

L(Zn(x + zn)

cSRW log n
,

Zn(x)
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Conjecture on survival at two far away sites

If |zn| = na with a ∈ (0, 1/2), we conjecture that

L(Zn(x + zn)

cSRW log n
,

Zn(x)

cSRW log n
|Zn(x) ≥ 1,Zn(x + zn) ≥ 1) → (Ya,Y )

where Ya and Y are correlated.

Moreover, given {Zn(x) ≥ 1} ∩ {Zn(z) ≥ 1}, one could consider
the most recent common ancestor of particles at {x , z}.
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Number of occupied sites Ωn

Consequently,

E0[Ω
2
n|Zn ≥ 1] ∼ 2c2Ωn

2/(log n)2.

Recall that E0[Ωn|Zn ≥ 1] ∼ cΩ
n

log n .

Theorem[C. He and Lin’2022+, in progress]

When d = 2, if
∑

k e
δkpk < ∞ for some δ > 0, then

L( Ωn

cΩn/ log n
|Zn ≥ 1) → Exp(1).

Lalley-Zheng’2011 proved that when d ≥ 3,

L(Ωn

cn
,

Zn

σ2n/2
|Zn ≥ 1) → (Y ,Y ).

with Y ∼ Exp(1).
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1 Take the most recent common ancestor an of all alive particles
in Zn, let its generation be Un. Note that an has 2 children
which have descendants in Zn with probability 1− on(1). And
Un/n ⇒ U[0, 1].

Ωn

n/ log n
=

Ω
(1)
n−Un

+Ω
(2)
n−Un

− intersection of 2 sub-families

n/ log n

2 Intersection part is negligible. So the limiting dist. equation is

Ω
d
= U(Ω(1) +Ω(2))

where U ∼ U[0, 1] independent of others, Ω(1), Ω(2) are i.i.d.
copies of Ω. So, Ω is of exponential dist.

3 Mallows distance on probability measures can be applied here

d(µ, ν) = inf
X∼µ,Y∼ν

√
E[(X − Y )2]
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Conjectures

1 Vn = maxx Zn(x)? Vn = ΘP(log n) when d ≥ 3. Similarly,

Vn

log n
≈ max{

V
(1)
n−Un

log n
,
V

(2)
n−Un

log n
} =⇒ V

d
= max{V (1),V (2)}

So V is some constant c ∈ [0,∞]. Conjecture:

Vn/ log n
P→ cd ∈ (0,∞) for d ≥ 3.

2 We should have Vn = ΘP(log n)
2 when d = 2. Conjecture:

Vn/(log n)
2 P→ c2 for d = 2.

3 In stead of Mallows distance, what kind of distance can we
use here?
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