Critical Branching Random Walk conditioned to survive at a given set in \mathbb{Z}^2

Xinxin Chen¹

¹Beijing Normal University Joint work with H. He (BNU) and S. Lin (Sorbonne Paris)

The 17th Workshop on Markov Processes and Related Topics

Table of Contents

1 Critical branching simple random walk in \mathbb{Z}^d

(2) Yaglom theorem for CBRW in \mathbb{Z}^2

3 Survival probabilities at two sites for CBRW

Critical branching simple random walk in \mathbb{Z}^d

• Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k\ge 0} kp_k = 1$ and $\sum_{k\ge 0} k^2 p_k 1 = \sigma^2 < \infty$.

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k\ge 0} kp_k = 1$ and $\sum_{k\ge 0} k^2 p_k 1 = \sigma^2 < \infty$.

Model:

• At time 0, root ρ located at $S_{\rho} = 0 \in \mathbb{Z}^d$;

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k\ge 0} kp_k = 1$ and $\sum_{k\ge 0} k^2 p_k 1 = \sigma^2 < \infty$.

Model:

- At time 0, root ρ located at $S_{\rho} = 0 \in \mathbb{Z}^d$;
- At time n + 1, any particle u of the n-th generation dies and produces independently N_u children and from S_u, the position of u, each child makes a jump according to X. N_u is distributed as {p_k; k ≥ 0}.

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k\ge 0} kp_k = 1$ and $\sum_{k\ge 0} k^2 p_k 1 = \sigma^2 < \infty$.

Model:

- At time 0, root ρ located at $S_{\rho} = 0 \in \mathbb{Z}^d$;
- At time n + 1, any particle u of the n-th generation dies and produces independently N_u children and from S_u, the position of u, each child makes a jump according to X. N_u is distributed as {p_k; k ≥ 0}.
- For any $B \subset \mathbb{Z}^d$,

$$Z_n(B):=\sum_{|u|=n}1_{S_u\in B},$$

where |u| denotes the generation of u. $\{Z_n = Z_n(\mathbb{Z}^d)\}_{n \ge 0}$ is a critical GW process which becomes extinct a.s. $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$

Survival probability in B at time n

For any fixed finite set $B \subset \mathbb{Z}^d$,

 $\mathbb{P}_0(Z_n(B) \geq 1) \sim ?$

• Kolmogorov'1938 showed that $\mathbb{P}(Z_n \ge 1) \sim \frac{2}{\sigma^2 n}$ as $n \to \infty$.

Survival probability in B at time n

For any fixed finite set $B \subset \mathbb{Z}^d$,

 $\mathbb{P}_0(Z_n(B) \geq 1) \sim ?$

- Kolmogorov'1938 showed that $\mathbb{P}(Z_n \ge 1) \sim \frac{2}{\sigma^2 n}$ as $n \to \infty$.
- When $d \ge 3$, Rapenne'2022+ obtains that

$$\mathbb{P}_0(Z_n(B) \ge 1) \sim \textit{Constant} \times P_n(B) \sim \frac{C_0|B|}{n^{d/2}}.$$

where $P_n(B) = \mathbb{P}_0(S_n \in B)$ with $\{S_n\}_{n \ge 0}$ simple random walk in \mathbb{Z}^d . Moreover,

$$\mathbb{P}_0(Z_n(B) \in \cdot | Z_n(B) \geq 1) \to p_B(\cdot).$$

How about d = 2?

• Durrett'1979 proved for critical branching Brownian motion in \mathbb{R}^2 , if *B* is a bounded open set with $|\partial B| = 0$,

$$\mathbb{P}_0\left(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > h\right) \sim e^{-h}\frac{4}{n\log n}, \forall h > 0.$$

$$\Rightarrow \mathbb{P}_0\left(Z_n(B) \ge 1\right) = \mathbb{P}_0\left(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > 0\right) \gtrsim \frac{4}{n\log n}.$$

(日)

How about d = 2?

• Durrett'1979 proved for critical branching Brownian motion in \mathbb{R}^2 , if *B* is a bounded open set with $|\partial B| = 0$,

$$\mathbb{P}_0\left(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > h\right) \sim e^{-h}\frac{4}{n\log n}, \forall h > 0.$$

$$\Rightarrow \mathbb{P}_0(Z_n(B) \ge 1) = \mathbb{P}_0\left(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > 0\right) \gtrsim \frac{4}{n\log n}.$$

• Lalley-Zheng'2011 proved that if $B = \{x\} \subset \mathbb{Z}^2$, offspring is critical binary $p_0 = p_2 = 1/2$, motion is SRW,

$$\frac{P_n(x)}{C_3 + C_4 \log n} \le \mathbb{P}_0(Z_n(x) \ge 1) \le \frac{C_1}{n \log n} \exp(-C_2 \frac{|x|^2}{n})$$

where $P_n(x) = \mathbb{P}_0(S_n = x)$ with $\{S_n\}_{n \ge 0}$ simple random walk. Note that

$$P_n(x) = \frac{5}{4\pi n} e^{-\frac{5|x|^2}{4n}} + \frac{o_n(1)}{n}.$$

Table of Contents

old I Critical branching simple random walk in \mathbb{Z}^d

2 Yaglom theorem for CBRW in \mathbb{Z}^2

3 Survival probabilities at two sites for CBRW

Yaglom theorem for CBRW [C. He and Lin'2022+, in progress]

When d = 2, if $\sum_{k} e^{\delta k} p_k < \infty$ for some $\delta > 0$, then • uniformly for $x \in \mathbb{Z}^2$,

$$\mathbb{P}_0(Z_n(x) \ge 1) = \frac{P_n(x)}{c_{SRW}\sigma^2 \log n} + o(\frac{1}{n \log n});$$

where
$$P_n(x) \sim \frac{C_{SRW}}{n}$$
 if $|x| = o(\sqrt{n})$.

2 for any fixed bounded set $B \subset \mathbb{Z}^2$,

$$\mathbb{P}_0(Z_n(B)\geq 1)\sim \frac{4}{\sigma^2 n\log n};$$

 $\textbf{ o further, for } z_n \in \mathbb{Z}^2 \text{ such that } z_n/\sqrt{n} \to z \in \mathbb{R}^2 \text{,}$

$$\mathcal{L}(rac{Z_n(z_n+B)}{c_{SRW}|B|\log n}|Z_n(z_n+B)\geq 1)
ightarrow \mathsf{Exp}(1).$$

Critical BRW in \mathbb{Z}^2

classical Yaglom theorem

For critical GW process $\{Z_n\}_{n\geq 0}$,

$$\mathcal{L}(rac{Z_n}{\sigma^2 n/2}|Z_n\geq 1)
ightarrow \mathit{Exp}(1).$$

Image: A matrix and a matrix

-

э

Critical BRW in \mathbb{Z}^2

classical Yaglom theorem

For critical GW process $\{Z_n\}_{n\geq 0}$,

$$\mathcal{L}(rac{Z_n}{\sigma^2 n/2}|Z_n\geq 1)
ightarrow \textit{Exp}(1).$$

Theorem[C. He and Lin'2022+, in progress]

When d = 2, if $\sum_{k} e^{\delta k} p_k < \infty$ for some $\delta > 0$, then for any $|x| = O(\sqrt{n})$,

$$\mathcal{L}(\frac{Z_n}{\sigma^2 n/2}, \frac{Z_n(x)}{c_{SRW} \log n} | Z_n(x) \ge 1) \rightarrow (\underbrace{\Gamma(2, 1), Exp(1)}_{indep.}).$$

CBRW at typical position

At time *n*, given $\{Z_n \ge 1\}$, choose uniformly one particle among Z_n alive ones and denote its position by S_n^* which is called typical position.

CBRW at typical position

At time *n*, given $\{Z_n \ge 1\}$, choose uniformly one particle among Z_n alive ones and denote its position by S_n^* which is called typical position.

Theorem [C. He and Lin'2022+, in progress]

When d= 2, if $\sum_k e^{\delta k} p_k < \infty$ for some $\delta >$ 0, then,

$$\mathcal{L}(rac{Z_n(S_n^*)}{c_{SRW}\log n}|Z_n\geq 1)
ightarrow \Gamma(2,1).$$

This confirms a conjecture of Lalley-Zheng'2011.

CBRW at typical position

At time *n*, given $\{Z_n \ge 1\}$, choose uniformly one particle among Z_n alive ones and denote its position by S_n^* which is called typical position.

Theorem [C. He and Lin'2022+, in progress]

When d= 2, if $\sum_k e^{\delta k} p_k < \infty$ for some $\delta >$ 0, then,

$$\mathcal{L}(rac{Z_n(S_n^*)}{c_{SRW}\log n}|Z_n\geq 1)
ightarrow \Gamma(2,1).$$

This confirms a conjecture of Lalley-Zheng'2011.

Let $\Omega_n = \sum_{x \in \mathbb{Z}^2} \mathbf{1}_{\{Z_n(x) \ge 1\}}$ be the number of occupied sites. Lalley-Zheng'2011 showed that conditioned on $\{Z_n \ge 1\}$,

$$\Omega_n = O_{\mathbb{P}}(\frac{n}{\log n}), \ V_n = \max_x Z_n(x) = O_{\mathbb{P}}(\log n)^2.$$

Table of Contents

old I Critical branching simple random walk in \mathbb{Z}^d

(2) Yaglom theorem for CBRW in \mathbb{Z}^2

3 Survival probabilities at two sites for CBRW

Survival at two sites

Observations:

• For Ω_n the total number of occupied sites at time n,

$$\mathbb{E}_0[\Omega_n] = \sum_{x \in \mathbb{Z}^2} \mathbb{P}_0(Z_n(x) \ge 1) \approx \sum_x \frac{P_n(x)}{c_{SRW}\sigma^2 \log n} = \frac{1}{c_{SRW}\sigma^2 \log n}.$$

So, $\mathbb{E}_0[\Omega_n|Z_n\geq 1]\sim c_\Omega rac{n}{\log n}.$ The second moment is

$$\mathbb{E}_0[\Omega_n^2] = \sum_{x,z} \mathbb{P}_0(Z_n(x) \ge 1, Z_n(z) \ge 1)$$

Survival at two sites

Observations:

• For Ω_n the total number of occupied sites at time n,

$$\mathbb{E}_0[\Omega_n] = \sum_{x \in \mathbb{Z}^2} \mathbb{P}_0(Z_n(x) \ge 1) \approx \sum_x \frac{P_n(x)}{c_{SRW}\sigma^2 \log n} = \frac{1}{c_{SRW}\sigma^2 \log n}.$$

So, $\mathbb{E}_0[\Omega_n|Z_n\geq 1]\sim c_\Omega rac{n}{\log n}.$ The second moment is

$$\mathbb{E}_0[\Omega_n^2] = \sum_{x,z} \mathbb{P}_0(Z_n(x) \ge 1, Z_n(z) \ge 1)$$

Question: $\mathbb{P}_0(Z_n(x) \ge 1, Z_n(x+z_n) \ge 1)$ with $|x| = O(\sqrt{n})$ and $|z_n| = \ell_n \in [1, \sqrt{n}].$

Theorem[C. He and Lin'2022+, in progress]

When
$$d = 2$$
, if $\sum_{k} e^{\delta k} p_k < \infty$ for some $\delta > 0$, then for $\ell_n = |z_n|$
and $|x| = O(\sqrt{n})$,
and $|x| = O(\sqrt{n})$,
if $\ell_n = n^{o(1)}$, then
 $\mathbb{P}_0(Z_n(x) \ge 1, Z_n(x + z_n) \ge 1) \sim \mathbb{P}_0(Z_n(x) \ge 1)$;
and $\ell_n = n^a$ with $a \in (0, 1/2)$, then
 $\mathbb{P}_0(Z_n(x) \ge 1, Z_n(x + z_n) \ge 1) \sim \mathbb{P}_0(Z_n(x) \ge 1) \frac{1 - 2a}{1 - a}$;
and $if z_n/\sqrt{n} \rightarrow z_1 \neq 0$ and $x/\sqrt{n} \rightarrow z_0$ ($\ell_n \sim constant \times \sqrt{n}$),
then

$$\mathbb{P}_0(Z_n(x) \ge 1, Z_n(x+z_n) \ge 1) \sim \mathbb{P}_0(Z_n(x) \ge 1) \frac{\gamma(z_0, z_1)\sigma^2}{\log n}.$$

Theorem[C. He and Lin'2022+, in progress]

When d = 2, if $\sum_{k} e^{\delta k} p_k < \infty$ for some $\delta > 0$, then for $\ell_n = |z_n|$ and $|x| = O(\sqrt{n})$, if $\ell_n = n^{o(1)}$, then $\mathcal{L}(\frac{Z_n(x+z_n)}{c_{SRW} \log n}, \frac{Z_n(x)}{c_{SRW} \log n} | Z_n(x) \ge 1) \to (Y, Y).$ where Y is Exp(1) random variable. if $z_n/\sqrt{n} \to z_1 \neq 0$ and $x/\sqrt{n} \to z_0$ ($\ell_n \sim constant \times \sqrt{n}$),

then

$$\mathcal{L}(\frac{Z_n(x+z_n)}{c_{SRW}\log n}, \frac{Z_n(x)}{c_{SRW}\log n} | Z_n(x) \ge 1, Z_n(x+z_n) \ge 1) \to (Y', Y)$$

< 同 > < 回 > < 回 > -

where Y', Y are independent Exp(1) random variables.

Conjecture on survival at two far away sites

If
$$|z_n| = n^a$$
 with $a \in (0, 1/2)$, we conjecture that

$$\mathcal{L}(\frac{Z_n(x+z_n)}{c_{SRW}\log n}, \frac{Z_n(x)}{c_{SRW}\log n} | Z_n(x) \ge 1, Z_n(x+z_n) \ge 1) \to (Y_a, Y)$$

where Y_a and Y are correlated.

Moreover, given $\{Z_n(x) \ge 1\} \cap \{Z_n(z) \ge 1\}$, one could consider the most recent common ancestor of particles at $\{x, z\}$.

Number of occupied sites Ω_n

Consequently,

$$\mathbb{E}_0[\Omega_n^2|Z_n \ge 1] \sim 2c_\Omega^2 n^2/(\log n)^2.$$

Recall that $\mathbb{E}_0[\Omega_n | Z_n \ge 1] \sim c_{\Omega} \frac{n}{\log n}$.

< A > <

Number of occupied sites Ω_n

Consequently,

$$\mathbb{E}_0[\Omega_n^2|Z_n \geq 1] \sim 2c_\Omega^2 n^2/(\log n)^2.$$

Recall that $\mathbb{E}_0[\Omega_n | Z_n \ge 1] \sim c_{\Omega} \frac{n}{\log n}$.

Theorem[C. He and Lin'2022+, in progress]

When d=2, if $\sum_k e^{\delta k} p_k < \infty$ for some $\delta > 0$, then

$$\mathcal{L}(rac{\Omega_n}{c_\Omega n/\log n}|Z_n\geq 1)
ightarrow {\sf Exp}(1).$$

Number of occupied sites Ω_n

Consequently,

$$\mathbb{E}_0[\Omega_n^2|Z_n \geq 1] \sim 2c_\Omega^2 n^2/(\log n)^2.$$

Recall that $\mathbb{E}_0[\Omega_n | Z_n \ge 1] \sim c_{\Omega} \frac{n}{\log n}$.

Theorem[C. He and Lin'2022+, in progress]

When d= 2, if $\sum_k e^{\delta k} p_k < \infty$ for some $\delta >$ 0, then

$$\mathcal{L}(rac{\Omega_n}{c_\Omega n/\log n}|Z_n\geq 1)
ightarrow {\it Exp}(1).$$

Lalley-Zheng'2011 proved that when $d \ge 3$,

$$\mathcal{L}(\frac{\Omega_n}{cn}, \frac{Z_n}{\sigma^2 n/2} | Z_n \ge 1) \to (Y, Y).$$

with $Y \sim Exp(1)$.

A (1) > A (2) > A

• Take the most recent common ancestor a_n of all alive particles in Z_n , let its generation be U_n . Note that a_n has 2 children which have descendants in Z_n with probability $1 - o_n(1)$. And $U_n/n \Rightarrow U[0, 1]$.

$$\frac{\Omega_n}{n/\log n} = \frac{\Omega_{n-U_n}^{(1)} + \Omega_{n-U_n}^{(2)} - \text{ intersection of 2 sub-families}}{n/\log n}$$

< ロ > < 同 > < 三 > < 三 >

• Take the most recent common ancestor a_n of all alive particles in Z_n , let its generation be U_n . Note that a_n has 2 children which have descendants in Z_n with probability $1 - o_n(1)$. And $U_n/n \Rightarrow U[0, 1]$.

$$\frac{\Omega_n}{n/\log n} = \frac{\Omega_{n-U_n}^{(1)} + \Omega_{n-U_n}^{(2)} - \text{ intersection of 2 sub-families}}{n/\log n}$$

2 Intersection part is negligible. So the limiting dist. equation is

$$\Omega \stackrel{d}{=} U(\Omega^{(1)} + \Omega^{(2)})$$

where $U \sim U[0, 1]$ independent of others, $\Omega^{(1)}$, $\Omega^{(2)}$ are i.i.d. copies of Ω . So, Ω is of exponential dist.

S Mallows distance on probability measures can be applied here

$$d(\mu,\nu) = \inf_{X \sim \mu, Y \sim \nu} \sqrt{\mathbb{E}[(X - Y)^2]}$$

Conjectures

•
$$V_n = \max_x Z_n(x)$$
? $V_n = \Theta_{\mathbb{P}}(\log n)$ when $d \ge 3$. Similarly,

$$\frac{V_n}{\log n} \approx \max\{\frac{V_{n-U_n}^{(1)}}{\log n}, \frac{V_{n-U_n}^{(2)}}{\log n}\} \Longrightarrow V \stackrel{d}{=} \max\{V^{(1)}, V^{(2)}\}$$

So V is some constant $c \in [0, \infty]$. Conjecture: $V_n / \log n \xrightarrow{\mathbb{P}} c_d \in (0, \infty)$ for $d \ge 3$.

- We should have V_n = Θ_ℙ(log n)² when d = 2. Conjecture: V_n/(log n)² → c₂ for d = 2.
- In stead of Mallows distance, what kind of distance can we use here?

References

- Durrett, R. (1979): An infinite particle system with additive interactions. *Advances in Applied Probability*.**11**(2):355-383.
- Geiger, J. (2000): A new proof of Yaglom's exponential limit law. In *Mathematics and Computer Science (Versailles, 2000)* 245-249.
- Lalley, S. P. and Zheng, X. (2011): Occupation statistics of critical branching random walks in two or higher dimensions. *Ann. Probab.* **39**: 327-368.