Critical Branching Random Walk conditioned to survive at a given set in \mathbb{Z}^2

Xinxin Chen¹

¹Beijing Normal University Joint work with H. He (BNU) and S. Lin (Sorbonne Paris)

The 17th Workshop on Markov Processes and Related Topics

つくい

Table of Contents

1 [Critical branching simple random walk in](#page-1-0) \mathbb{Z}^d

2 [Yaglom theorem for CBRW in](#page-11-0) \mathbb{Z}^2

3 [Survival probabilities at two sites for CBRW](#page-18-0)

4日)

同 → ← ヨ →

 Ω

Critical branching simple random walk in \mathbb{Z}^d

Step size of SRW : $\mathbb{P}(\mathcal{X}=e)=\frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.

4 17 18

4母 ト 4回 ト

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k \ge 0} k p_k = 1$ and $\sum_{k\geq 0} k^2 p_k - 1 = \sigma^2 < \infty.$

∢ 何 ▶ → 三 ▶

 Ω

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k \ge 0} k p_k = 1$ and $\sum_{k\geq 0} k^2 p_k - 1 = \sigma^2 < \infty.$

Model:

At time 0, root ρ located at $\mathcal{S}_\rho = 0 \in \mathbb{Z}^d$;

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k \ge 0} k p_k = 1$ and $\sum_{k\geq 0} k^2 p_k - 1 = \sigma^2 < \infty.$

Model:

- At time 0, root ρ located at $\mathcal{S}_\rho = 0 \in \mathbb{Z}^d$;
- At time $n + 1$, any particle u of the n-th generation dies and produces independently N_{μ} children and from S_{μ} , the position of u, each child makes a jump according to X . N_{μ} is distributed as $\{p_k; k > 0\}$.

→ 何 ▶ → 臣 ▶ →

つくい

Critical branching simple random walk in \mathbb{Z}^d

- Step size of SRW : $\mathbb{P}(X = e) = \frac{1}{1+2d}$, $\forall |e|_1 \leq 1$.
- Critical offspring law : $\{p_k; k \ge 0\}$ s.t. $\sum_{k \ge 0} k p_k = 1$ and $\sum_{k\geq 0} k^2 p_k - 1 = \sigma^2 < \infty.$

Model:

- At time 0, root ρ located at $\mathcal{S}_\rho = 0 \in \mathbb{Z}^d$;
- At time $n + 1$, any particle u of the n-th generation dies and produces independently N_{μ} children and from S_{μ} , the position of u, each child makes a jump according to X . N_{μ} is distributed as $\{p_k; k \geq 0\}$.
- For any $B \subset \mathbb{Z}^d$,

$$
Z_n(B):=\sum_{|u|=n}1_{S_u\in B},
$$

where $|u|$ denotes the generation of u . $\{Z_n = Z_n(\mathbb{Z}^d)\}_{n\geq 0}$ is a critical GW process which becomes exti[nc](#page-5-0)t [a](#page-7-0)[.s](#page-1-0)[.](#page-2-0) QQ

Survival probability in B at time n

For any fixed finite set $B\subset \mathbb{Z}^d$,

 $\mathbb{P}_0(Z_n(B)\geq 1)\sim ?$

Kolmogorov'1938 showed that $\mathbb{P}(Z_n \geq 1) \sim \frac{2}{\sigma^2 n}$ as $n \to \infty$.

Survival probability in B at time n

For any fixed finite set $B\subset \mathbb{Z}^d$,

 $\mathbb{P}_0(Z_n(B) > 1) \sim?$

- Kolmogorov'1938 showed that $\mathbb{P}(Z_n \geq 1) \sim \frac{2}{\sigma^2 n}$ as $n \to \infty$.
- When $d \geq 3$, Rapenne'2022+ obtains that

$$
\mathbb{P}_0(Z_n(B)\geq 1)\sim \text{Constant} \times P_n(B)\sim \frac{C_0|B|}{n^{d/2}}.
$$

where $P_n(B) = \mathbb{P}_0(S_n \in B)$ with $\{S_n\}_{n\geq 0}$ simple random walk in \mathbb{Z}^d . Moreover,

$$
\mathbb{P}_0(Z_n(B)\in \cdot |Z_n(B)\geq 1)\to p_B(\cdot).
$$

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

How about $d = 2$?

• Durrett'1979 proved for critical branching Brownian motion in \mathbb{R}^2 , if B is a bounded open set with $|\partial B|=0$,

$$
\mathbb{P}_0(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > h) \sim e^{-h}\frac{4}{n\log n}, \forall h > 0.
$$

$$
\Rightarrow \mathbb{P}_0(Z_n(B) \ge 1) = \mathbb{P}_0(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > 0) \gtrsim \frac{4}{n\log n}.
$$

∢ ロ ▶ (何) ((ヨ) (

э

∍

How about $d = 2$?

• Durrett'1979 proved for critical branching Brownian motion in \mathbb{R}^2 , if B is a bounded open set with $|\partial B|=0$,

$$
\mathbb{P}_0\left(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > h\right) \sim e^{-h}\frac{4}{n\log n}, \forall h > 0.
$$

$$
\Rightarrow \mathbb{P}_0(Z_n(B) \ge 1) = \mathbb{P}_0\left(\frac{8\pi}{\log n}\frac{Z_n(B)}{|B|} > 0\right) \gtrsim \frac{4}{n\log n}.
$$

Lalley-Zheng'2011 proved that if $B = \{x\} \subset \mathbb{Z}^2$, offspring is critical binary $p_0 = p_2 = 1/2$, motion is SRW,

$$
\frac{P_n(x)}{C_3+C_4\log n}\leq \mathbb{P}_0(Z_n(x)\geq 1)\leq \frac{C_1}{n\log n}\exp(-C_2\frac{|x|^2}{n})
$$

where $P_n(x) = \mathbb{P}_0(S_n = x)$ with $\{S_n\}_{n>0}$ simple random walk. Note that

$$
P_n(x)=\frac{5}{4\pi n}e^{-\frac{5|x|^2}{4n}}+\frac{o_n(1)}{\sum_{\forall n\in\mathbb{Z}}\left|\frac{n}{n(n+1)}\right|}\cdot e^{-\frac{5}{2}x}
$$

Table of Contents

1) [Critical branching simple random walk in](#page-1-0) \mathbb{Z}^d

2 [Yaglom theorem for CBRW in](#page-11-0) \mathbb{Z}^2

3 [Survival probabilities at two sites for CBRW](#page-18-0)

4日)

同 → ← ヨ →

つくへ

Yaglom theorem for CBRW \overline{C} . He and Lin'2022 $+$, in progress]

When $d=$ 2, if $\sum_{k} \mathrm{e}^{\delta k} p_{k} < \infty$ for some $\delta > 0$, then **1** uniformly for $x \in \mathbb{Z}^2$,

$$
\mathbb{P}_0(Z_n(x)\geq 1)=\frac{P_n(x)}{c_{SRW}\sigma^2\log n}+o(\frac{1}{n\log n});
$$

where
$$
P_n(x) \sim \frac{C_{SRW}}{n}
$$
 if $|x| = o(\sqrt{n}).$

 \bullet for any fixed bounded set $B\subset \mathbb{Z}^2$,

$$
\mathbb{P}_0(Z_n(B)\geq 1)\sim \frac{4}{\sigma^2 n\log n};
$$

3 further, for $z_n \in \mathbb{Z}^2$ such that $z_n/2$ $\sqrt{n} \to z \in \mathbb{R}^2$,

$$
\mathcal{L}(\frac{Z_n(z_n + B)}{c_{SRW}|B|\log n}|Z_n(z_n + B) \geq 1) \to \textit{Exp}(1).
$$

Critical BRW in \mathbb{Z}^2

classical Yaglom theorem

For critical GW process $\{Z_n\}_{n\geq 0}$,

$$
\mathcal{L}(\frac{Z_n}{\sigma^2n/2}|Z_n\geq 1)\to \textit{Exp}(1).
$$

Xinxin Chen [Yaglom for CBRW](#page-0-0)

 4 D \rightarrow 4 \overline{B} \rightarrow 4 \overline{E}

 299

Э× э

Inches

Critical BRW in \mathbb{Z}^2

classical Yaglom theorem

For critical GW process $\{Z_n\}_{n\geq 0}$,

$$
\mathcal{L}(\frac{Z_n}{\sigma^2n/2}|Z_n\geq 1)\to \textit{Exp}(1).
$$

Theorem[C. He and Lin'2022+, in progress]

When $d = 2$, if $\sum_{k} e^{\delta k} p_k < \infty$ for some $\delta > 0$, then for any $|x| = O(\sqrt{n}),$

$$
\mathcal{L}(\frac{Z_n}{\sigma^2 n/2}, \frac{Z_n(x)}{c_{SRW} \log n} | Z_n(x) \geq 1) \rightarrow (\underbrace{\Gamma(2, 1), Exp(1)}_{indep.}).
$$

CBRW at typical position

At time *n*, given $\{Z_n \geq 1\}$, choose uniformly one particle among Z_n alive ones and denote its position by S_n^* which is called typical position.

 Ω

CBRW at typical position

At time *n*, given $\{Z_n \geq 1\}$, choose uniformly one particle among Z_n alive ones and denote its position by S_n^* which is called typical position.

Theorem [C. He and Lin'2022+, in progress]

When $d=$ 2, if $\sum_{k} \mathrm{e}^{\delta k} p_{k} < \infty$ for some $\delta > 0$, then,

$$
\mathcal{L}(\frac{Z_n(S_n^*)}{c_{SRW}\log n}|Z_n\geq 1)\to \Gamma(2,1).
$$

This confirms a conjecture of Lalley-Zheng'2011.

CBRW at typical position

At time *n*, given $\{Z_n \geq 1\}$, choose uniformly one particle among Z_n alive ones and denote its position by S_n^* which is called typical position.

Theorem [C. He and Lin'2022+, in progress]

When $d=$ 2, if $\sum_{k} \mathrm{e}^{\delta k} p_{k} < \infty$ for some $\delta > 0$, then,

$$
\mathcal{L}(\frac{Z_n(S_n^*)}{c_{SRW}\log n}|Z_n\geq 1)\to \Gamma(2,1).
$$

This confirms a conjecture of Lalley-Zheng'2011. Let $\Omega_n = \sum_{\mathsf{x} \in \mathbb{Z}^2} \mathbf{1}_{\{Z_n(\mathsf{x}) \geq 1\}}$ be the number of occupied sites. Lalley-Zheng'2011 showed that conditioned on $\{Z_n \geq 1\}$,

$$
\Omega_n = O_{\mathbb{P}}(\frac{n}{\log n}), \ \ V_n = \max_{x} Z_n(x) = O_{\mathbb{P}}(\log n)^2.
$$

Table of Contents

1) [Critical branching simple random walk in](#page-1-0) \mathbb{Z}^d

2 [Yaglom theorem for CBRW in](#page-11-0) \mathbb{Z}^2

3 [Survival probabilities at two sites for CBRW](#page-18-0)

 \leftarrow

同 → ← ヨ →

つへへ

Survival at two sites

Observations:

• For Ω_n the total number of occupied sites at time *n*,

$$
\mathbb{E}_0[\Omega_n] = \sum_{x \in \mathbb{Z}^2} \mathbb{P}_0(Z_n(x) \geq 1) \approx \sum_x \frac{P_n(x)}{c_{SRW} \sigma^2 \log n} = \frac{1}{c_{SRW} \sigma^2 \log n}.
$$

So, $\mathbb{E}_0[\Omega_n | Z_n \geq 1] \sim c_{\Omega} \frac{n}{\log n}$ $\frac{n}{\log n}$. The second moment is

$$
\mathbb{E}_0[\Omega_n^2] = \sum_{x,z} \mathbb{P}_0(Z_n(x) \geq 1, Z_n(z) \geq 1)
$$

4日)

Survival at two sites

Observations:

• For Ω_n the total number of occupied sites at time *n*,

$$
\mathbb{E}_0[\Omega_n] = \sum_{x \in \mathbb{Z}^2} \mathbb{P}_0(Z_n(x) \geq 1) \approx \sum_x \frac{P_n(x)}{c_{SRW} \sigma^2 \log n} = \frac{1}{c_{SRW} \sigma^2 \log n}.
$$

So, $\mathbb{E}_0[\Omega_n | Z_n \geq 1] \sim c_{\Omega} \frac{n}{\log n}$ $\frac{n}{\log n}$. The second moment is

$$
\mathbb{E}_0[\Omega_n^2] = \sum_{x,z} \mathbb{P}_0(Z_n(x) \geq 1, Z_n(z) \geq 1)
$$

Question: $\mathbb{P}_0(Z_n(x) \geq 1, Z_n(x + z_n) \geq 1)$ with $|x| = O(\sqrt{2n})$ $Z_n(x) \geq 1, Z_n(x + z_n) \geq 1)$ with $|x| = O(\sqrt{n})$ and $|z_n| = \ell_n \in [1, \sqrt{n}].$

Theorem[C. He and Lin'2022+, in progress]

When $d = 2$, if $\sum_{k} e^{\delta k} p_k < \infty$ for some $\delta > 0$, then for $\ell_n = |z_n|$ and $|x| = O(\sqrt{n}),$ **D** if $\ell_n = n^{o(1)}$, then $\mathbb{P}_0(Z_n(x) \geq 1, Z_n(x + z_n) \geq 1) \sim \mathbb{P}_0(Z_n(x) \geq 1);$ **2** if $\ell_n = n^a$ with $a \in (0, 1/2)$, then $\mathbb{P}_0(Z_n(x) \geq 1, Z_n(x+z_n) \geq 1) \sim \mathbb{P}_0(Z_n(x) \geq 1) \frac{1-2a}{1-a};$ 3 if $z_n/$ $\sqrt{n} \rightarrow z_1 \neq 0$ and $x/\sqrt{n} \rightarrow z_0$ $(\ell_n \sim constant \times \sqrt{n})$ $\overline{n}),$ then

$$
\mathbb{P}_0(Z_n(x)\geq 1, Z_n(x+z_n)\geq 1)\sim \mathbb{P}_0(Z_n(x)\geq 1)\frac{\gamma(z_0,z_1)\sigma^2}{\log n}.
$$

Theorem^[C. He and Lin'2022 $+$, in progress]

When $d = 2$, if $\sum_{k} e^{\delta k} p_k < \infty$ for some $\delta > 0$, then for $\ell_n = |z_n|$ and $|x| = O(\sqrt{\frac{2}{\sqrt{2}}})$ n), **D** if $\ell_n = n^{o(1)}$, then $\mathcal{L}(\frac{Z_n(x+z_n)}{1-x_n})$ $\frac{Z_n(x+z_n)}{c_{SRW}}$, $\frac{Z_n(x)}{c_{SRW}}$ log $\frac{Z_n(x)}{C_{SRW}}$ log n[|]Z_n(x) \geq 1) \rightarrow (Y, Y).

where Y is $Exp(1)$ random varaible.

2 if $z_n/$ $\sqrt{n} \to z_1 \neq 0$ and $x/\sqrt{n} \to z_0$ ($\ell_n \sim$ constant $\times \sqrt{n}$) $\overline{n}),$ then

$$
\mathcal{L}(\frac{Z_n(x+z_n)}{c_{SRW}\log n},\frac{Z_n(x)}{c_{SRW}\log n}|Z_n(x)\geq 1,Z_n(x+z_n)\geq 1)\to (Y',Y)
$$

メタト メミト メミト

つへへ

where Y' , Y are independent $Exp(1)$ random variables.

Conjecture on survival at two far away sites

If
$$
|z_n| = n^a
$$
 with $a \in (0, 1/2)$, we conjecture that

$$
\mathcal{L}(\frac{Z_n(x+z_n)}{c_{SRW}\log n},\frac{Z_n(x)}{c_{SRW}\log n}|Z_n(x)\geq 1,Z_n(x+z_n)\geq 1)\to (Y_a,Y)
$$

where Y_a and Y are correlated.

Moreover, given $\{Z_n(x) \geq 1\} \cap \{Z_n(z) \geq 1\}$, one could consider the most recent common ancestor of particles at $\{x, z\}$.

つくい

Number of occupied sites Ω_n

Consequently,

$$
\mathbb{E}_0[\Omega_n^2 | Z_n \ge 1] \sim 2c_\Omega^2 n^2 / (\log n)^2.
$$

Recall that $\mathbb{E}_0[\Omega_n | Z_n \ge 1] \sim c_\Omega \frac{n}{\log n}$.

4 0 8

④ 骨 → ④ 手

э

Пb.

Inches

э

Number of occupied sites Ω_n

Consequently,

$$
\mathbb{E}_0[\Omega_n^2|Z_n\geq 1]\sim 2c_{\Omega}^2n^2/(\log n)^2.
$$

Recall that $\mathbb{E}_0[\Omega_n | Z_n \geq 1] \sim c_{\Omega} \frac{n}{\log n}$ $\frac{n}{\log n}$.

Theorem[C. He and Lin'2022+, in progress]

When $d=$ 2, if $\sum_{k} \mathrm{e}^{\delta k} p_{k} < \infty$ for some $\delta > 0$, then

$$
\mathcal{L}(\frac{\Omega_n}{c_{\Omega}n/\log n}|Z_n\geq 1)\to \mathit{Exp}(1).
$$

 QQ

Number of occupied sites Ω_n

Consequently,

$$
\mathbb{E}_0[\Omega_n^2|Z_n\geq 1]\sim 2c_{\Omega}^2n^2/(\log n)^2.
$$

Recall that $\mathbb{E}_0[\Omega_n | Z_n \geq 1] \sim c_{\Omega} \frac{n}{\log n}$ $\frac{n}{\log n}$.

Theorem[C. He and Lin'2022+, in progress]

When $d=$ 2, if $\sum_{k} \mathrm{e}^{\delta k} p_{k} < \infty$ for some $\delta > 0$, then

$$
\mathcal{L}(\frac{\Omega_n}{c_{\Omega}n/\log n}|Z_n\geq 1)\to \text{Exp}(1).
$$

Lalley-Zheng'2011 proved that when $d > 3$,

$$
\mathcal{L}(\frac{\Omega_n}{cn},\frac{Z_n}{\sigma^2 n/2}|Z_n\geq 1)\to (Y,Y).
$$

with $Y \sim Exp(1)$.

→ 伊 ▶ → 君 ▶ →

 \bullet Take the most recent common ancestor a_n of all alive particles in Z_n , let its generation be U_n . Note that a_n has 2 children which have descendants in Z_n with probability $1 - o_n(1)$. And $U_n/n \Rightarrow U[0, 1].$

$$
\frac{\Omega_n}{n/\log n} = \frac{\Omega_{n-U_n}^{(1)} + \Omega_{n-U_n}^{(2)} - \text{ intersection of 2 sub-families}}{n/\log n}
$$

∢ロト ⊀母 ▶ ∢∃ ▶ ∢∃ ▶..

э

 \bullet Take the most recent common ancestor a_n of all alive particles in Z_n , let its generation be U_n . Note that a_n has 2 children which have descendants in Z_n with probability $1 - o_n(1)$. And $U_n/n \Rightarrow U[0,1].$

$$
\frac{\Omega_n}{n/\log n} = \frac{\Omega_{n-U_n}^{(1)} + \Omega_{n-U_n}^{(2)} - \text{ intersection of 2 sub-families}}{n/\log n}
$$

2 Intersection part is negligible. So the limiting dist. equation is

$$
\Omega\stackrel{d}{=}U(\Omega^{(1)}+\Omega^{(2)})
$$

where $U \sim U[0, 1]$ independent of others, $\Omega^{(1)}$, $\Omega^{(2)}$ are i.i.d. copies of $Ω$. So, $Ω$ is of exponential dist.

3 Mallows distance on probability measures can be applied here

$$
d(\mu, \nu) = \inf_{X \sim \mu, Y \sim \nu} \sqrt{\mathbb{E}[(X - Y)^2]}
$$

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Conjectures

•
$$
V_n = \max_x Z_n(x)
$$
? $V_n = \Theta_{\mathbb{P}}(\log n)$ when $d \geq 3$. Similarly,

$$
\frac{V_n}{\log n} \approx \max\{\frac{V_{n-U_n}^{(1)}}{\log n}, \frac{V_{n-U_n}^{(2)}}{\log n}\} \Longrightarrow V \stackrel{d}{=} \max\{V^{(1)}, V^{(2)}\}
$$

So V is some constant $c \in [0, \infty]$. Conjecture: $V_n/\log n \stackrel{\mathbb{P}}{\rightarrow} c_d \in (0,\infty)$ for $d \geq 3$.

- $\bullet\hspace{0.1cm}$ We should have $V_n=\Theta_{\mathbb{P}}(\log n)^2$ when $d=2.$ Conjecture: $V_n/(\log n)^2 \stackrel{\mathbb{P}}{\rightarrow} c_2$ for $d = 2$.
- ³ In stead of Mallows distance, what kind of distance can we use here?

つくい

References

- Durrett, R. (1979): An infinite particle system with additive interactions. Advances in Applied Probability.11(2):355-383.
- Geiger, J. (2000): A new proof of Yaglom's exponential limit law. In Mathematics and Computer Science (Versailles, 2000) 245-249.
- Lalley, S. P. and Zheng, X. (2011): Occupation statistics of critical branching random walks in two or higher dimensions. Ann. Probab. 39: 327-368.